GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity
نویسندگان
چکیده
We investigated the influence of a glycosylphosphatidylinositol (GPI) anchor on the ectodomain of the influenza hemagglutinin (HA) by replacing the wild type (wt) transmembrane and cytoplasmic domains with a GPI lipid anchor. GPI-anchored HA (GPI-HA) was transported to the cell surface with equal efficiency and at the same rate as wt-HA. Like wt-HA, cell surface GPI-HA, and its ectodomain released with the enzyme PI-phospholipase C (PI-PLC), were 9S trimers. Compared to wt-HA, the GPI-HA ectodomain underwent additional terminal oligosaccharide modifications; some of these occurred near the receptor binding pocket and completely inhibited the ability of GPI-HA to bind erythrocytes. Growth of GPI-HA-expressing cells in the presence of the mannosidase I inhibitor deoxymannojirimycin (dMM) abrogated the differences in carbohydrate modification and restored the ability of GPI-HA to bind erythrocytes. The ectodomain of GPI-HA produced from cells grown in the presence or absence of dMM underwent characteristic low pH-induced conformational changes (it released its fusion peptides and became hydrophobic and proteinase sensitive) but at 0.2 and 0.4 pH units higher than wt-HA, respectively. These results demonstrate that although GPI-HA forms a stable trimer with characteristics of the wt, its structure is altered such that its receptor binding activity is abolished. Our results show that transmembrane and GPI-anchored forms of the same ectodomain can exhibit functionally important differences in structure at a great distance from the bilayer.
منابع مشابه
Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts
Lipid rafts play important roles in cellular functions through concentrating or sequestering membrane proteins. This requires proteins to differ in the stability of their interactions with lipid rafts. However, knowledge of the dynamics of membrane protein-raft interactions is lacking. We employed FRAP to measure in live cells the lateral diffusion of influenza hemagglutinin (HA) proteins that ...
متن کاملThe MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines.
The MAL proteolipid has been recently demonstrated as being necessary for correct apical sorting of the transmembrane influenza virus hemagglutinin (HA) in Madin-Darby canine kidney (MDCK) cells. The fact that, in contrast to MDCK cells, Fischer rat thyroid (FRT) cells target the majority of glycosylphosphatidylinositol (GPI)-anchored proteins to the basolateral membrane provides us with the op...
متن کاملGPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes
Under fusogenic conditions, fluorescent dye redistributed from the outer monolayer leaflet of red blood cells (RBCs) to cells expressing glycophosphatidylinositol-anchored influenza virus hemagglutinin (GPI-HA) without transfer of aqueous dye. This suggests that hemifusion, but not full fusion, occurred (Kemble, G. W., T. Danieli, and J. M. White. 1994. Cell. 76:383-391). We extended the eviden...
متن کاملAmino Acid Sequence Analysis of Hemagglutinin Protein of H9N2 Isolated from Broilers in Tehran in 2007
Background and Aims: Since 1998, Iranian poultry industry has been affected by avian influenza (AI) virus, subtype H9N2. The association of high mortality and case report of H5N1 and H9N2 influenza virus in wild birds in recent years raised the suspicion of a possible new genetic modified AI virus. Methods: Partial nucleotide sequences and deduced amino acid of hemagglutinin (HA) genes of 4 H9...
متن کاملPhylogenetic Analysis of Hemagglutinin Gene of H9N2 Avian Influenza Viruses Isolated from Chicken in Iran in 2010-2011: Emerging of a New Subgroup
Background and Aims: Hemagglutinin (HA) protein of Avian Influenza (AI) plays an essential role in the virus pathogenicity. AI H9N2 subtype causes significant economic loss in broiler and layer in poultry farms in Iran. AI viruses have a great involvement in evolutionary changes at nucleotide and amino acid levels and vaccines could induce faster rates of such changes. Up-dated understanding of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 122 شماره
صفحات -
تاریخ انتشار 1993